# **High Efficiency Engines and Turbines**(HEET)



Abbie W. Layne
National Energy Technology Laboratory





## **ATS/HEET Comparisons**

## ATS-Product Development Focused





# **HEET-Technology Infusion Focused**

#### **Combustion**



Materials & Structures





## **HEET Goals**

*By the year 2010.....* 

- Conservation through reduced fuel use
  - 60% electric efficiency(HHV) coal plants
- Near zero emissions
  - No carbon, negligible nitrogen oxide and trace contaminates
- Flexibility fuels/operational
  - Coal syngas, hydrogen/at least 400 starts per year
- Improved electricity reliability
- Competitive life cycle cost





## **Drivers for Research Direction**

#### **Drivers**

# Fuel Flexibility RAM Efficiency Life Cycle Costs Time

## **Technology Roadmaps**

- Materials
  - alloys,ceramics
- Combustion
  - catalysts,rich/lean
- Aero/Thermal
  - •inter-cooling,blade design
- Condition Monitoring
  - sensors, controls, diagnostics
- Design Tools
  - large eddy simulations



## National Energy Policy Responsiveness

- Chapter 2 and 4: Development of CHP
  - For the near-term almost all turbine planned products are combined heat and power (CHP) and all are high efficiency (47-63%)
- Chapter 5: Protect Environment with Clean Coal Technologies
  - The fuel cell turbine hybrid technology is a key power block component of most high-efficiency, coal-based Vision 21 power plants
- Chapter 8: Support New Technologies to Address Global Climate Change
  - Because of their high efficiency and low CO2 and NOx emissions, turbines are ideal for any global climate change initiatives



## **HEET Development Plan**









#### **2003-2005**

- 65% efficient hybrids(<40MW)</li>
- 50% efficient coal turbine plants



## 2015

- 75% efficient gas plants
- 60+% coal plants
- Propulsion

#### **2010**

- 70% efficient hybrids(40MW)
- 55% efficient coal turbine plants



## **Pathways to Achieve Clean Coal Goals**

## Technology Roadmaps

- Materials
- Combustion
- Aero/thermal
- Controls/Sensors
- Condition Monitoring
- Design Tools

# Advanced Power Plants

- Syngas/Hydrogen combined cycle
- Fuel cell/turbine hybrids
- Rocket engine steam cycle
- Ramjet engine
- Hydraulic compression

Technology roadmaps produce advanced coal fueled power plants



## **Public Benefits**

- Potential U.S. Market (year 2005-2015) 160 GW
- Clean, reliable power in load congested regions
- By year 2020, cumulative savings\*:
  - Advanced Natural Gas Plants
    - Savings in the cost of electricity:\$3.5 Billion/yr
    - Carbon emissions reduction: 30 Million tons/yr
  - Advanced Coal Plants
    - Savings in the cost of electricity: \$350 Million/yr
    - Carbon emissions reduction: 15 Million tons/yr
- Maintain U.S. industry competitive position in growing international power markets
- National solutions for power and defense -- Collaboration between agencies



## Planned Accomplishments -- FY 2002

**Siemens - Westinghouse** 

**General Electric Company** 

**501GS -- 60 Hz** 



501G Launch Site Lakeland, Florida

375 MW, 59% Efficiency

Component Test 2002 Operation 2003 **7H -- 60 Hz(ATS)** 



2 x 107H Launch Site Scriba, New York, USA

400 MW, 60% Efficiency

FSNL Test 2000 Wales 50Hz Operation 09/02 Scriba Operation 2004



# Planned Accomplishments -- FY 2002 Materials and Ultra-Low Emissions

- ORNL Single Crystal Welding: Employ computational thermodynamics to investigate mechanisms for stray crystal formation in single crystal weld repairs
- ANL NDE Technology for Oxide-Based Composites: Evaluate
   NDE data as a function of fatigue test damage on oxide composites
- ANL Ceramic Reliability: Complete finite element stress distribution analysis of miniature specimen geometry
- CFD Research: Beta release of software for design of lowemission combustion systems
- GE Advanced Combustion: Evaluate sub-scale trapped vortex combustor
- Solar Laser Stabilization: CFD simulations will be used to determine the best laser focal positions for optimum flame stabilization and combustion oscillations abatement



## Planned Accomplishments -- FY 2002 Improved Electricity Reliability

- S-W TBC Monitor: Infrared emission from TBCs and associated progressions of deterioration will be characterized
- EPRI Life Management: Coating oxidation damage will be estimated, creep damage predicted and maintenance intervals will be established and compared to OEM's formulas
- EPRI Advanced Monitoring: Turbine anomaly detection and diagnostic software module will be developed to correlate performance shifts with degradation issues
- **GE Smart Turbine:** Fabricate and test flame temperature sensor



## **Program Funding Profiles**

DOE-Office of Fossil Energy

FY 2001
Appropriations

\$ 30.9 MM\*

\*\$12.4-ATS \*\$18.5-NGT FY 2002 President's <u>Budget</u>

\$0

FY 2002 Congressional

\$20.2MM



## **Non- DOE Collaborative Partners**

#### DOD/NASA/DOE



## Turbine Engine Alliance

California Energy Commission - Public Energy Interest Research Program

Additional government collaborative partners planned



## High Efficiency Engines and Turbines Road-Mapping Workshop

# Results of the Reston, Virginia HEET Workshop



Reston, Virginia February 7, 2002







# **Reston Roadmapping Summary**

- DOE and Gas Turbine Association sponsored a workshop in Reston, VA; February 7-8, 2002
- Focus was on industry recommendations for DOE sponsored R&D to support HEET Program
- Workshop yielded recommendations in three areas
  - Policy
  - Program
  - Technology



## **HEET Road-Mapping Workshop-Speakers**

- Opening remarks-Joseph Strakey, Carl Bauer
- Presentations
  - Jeff Abboud (GTA): National Energy Plan, bills pending in Congress to limit coal fired emissions
  - Abbie Layne (DOE): HEET Program Report to Congress, planned accomplishments, program goals, early entry demonstrations
  - Harvey Goldstein (Parsons): Market hurdles, commonality across roadmaps prepared by different organizations (DOE, EPRI, CURC, OEM's)



#### **Performance and Emissions**

- The next two slides show where we are and where we are going in terms of performance and emissions
- HEET activities must advance the state of the art to get us closer to meeting the program objectives. The devil is in the details.





# Performance & Cost of Coal-Based & Gas- Based Systems

|                     | Coal Fired<br>Current PC | Coal Fired<br>HEET-IGCC | Gas Fired Current G/H Frame | Gas Fired<br>HEET       |
|---------------------|--------------------------|-------------------------|-----------------------------|-------------------------|
| Efficiency          | 39% hhv                  | 60% hhv                 | 60% lhv                     | 75% lhv                 |
| COE                 | base                     | base-15%                | base                        | base-15%                |
| Fuel<br>Flexibility | single type<br>of coal   | multi-fuel              | nat gas or<br>No. 2 oil     | nat gas<br>or<br>syngas |
| Reliability         | base                     | base +                  | base                        | base +                  |

## Coal-Fired & Natural Gas-Fired Emissions

## **Current Systems:**

|                       | <b>PC-Fired</b> | NGCC    |
|-----------------------|-----------------|---------|
| Pollutant, Ib/106 Btu |                 |         |
| SO <sub>2</sub>       | 0.12-0.35       | Neg.    |
| NOx                   | 0.05-0.20       | >0.03   |
| CO <sub>2</sub>       | 197-230         | 120-130 |
| Particulate           | 0.001-0.010     | Neg.    |

HEET Technology Based Systems: near zero emissions of SO2, NOx, Hg, particulates. Sequestration-ready for carbon management



# **Policy Recommendations**

- Industry must have regulatory (emissions)
   certainty in order to risk capital developing new technologies
- Clean Coal Enterprise Zones and tax incentives
- National Materials/Combustion Test Facility recommended (Wilsonville?)
- Government (DOE) must fund in areas where industry will not where risk exceeds existing commercial incentives



# **Program Recommendations**

- Determine realistic objectives for 2007
- Set mid-term goals with decision points and offramps
- Use distributed generation to demonstrate technology at a small scale
- Support cross-cutting technologies
- Encourage strategic partnerships (Gov't/NGO's/industry/academia)
- Evaluate fuel cycle to define infrastructure requirements



# **Technology Recommendations**

- Develop better materials and coatings
- Test materials and combustors on syngas
- develop fuel-flexible, low emission, low acoustic combustors
- Develop better system simulation models and techniques, and do a better job with systems definition and integration
- Numerous other items that all contribute to an integrated program were suggested

